Cannabinoid CB1 receptor-dependent long-term depression in autaptic excitatory neurons.

نویسندگان

  • Ryan Kellogg
  • Ken Mackie
  • Alex Straiker
چکیده

Long-term depression (LTD) of synaptic signaling-lasting from tens of minutes to hours or longer-is a widespread form of synaptic plasticity in the brain. Neurons express diverse forms of LTD, including autaptic LTD (autLTD) observed in cultured hippocampal neurons, the mechanism of which remains unknown. We have recently reported that autaptic neurons express both endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE). We now report that activating cannabinoid CB(1) receptors is necessary for the induction of autLTD. Most surprisingly, CB(1) does not induce autLTD via the G(i/o) proteins typically activated by this receptor nor with G(s). Rather, the requirements of presynaptic phospholipase C and filled calcium stores suggest G(q). In autLTD, a 3- to 4-min activation of the receptor by the endocannabinoid 2-arachidonoyl glycerol leads to prolonged inhibition while leaving short-term inhibition (e.g., DSE) intact. autLTD requires activation of both metabo- and ionotropic glutamate receptors. autLTD also requires MEK/ERK activation. Under certain conditions, one or more DSE stimuli will elicit autLTD. It is becoming evident that cannabinoids mediate multiple forms of plasticity at a single synapse, stretching temporally from tens of seconds (DSE/MSE) to tens of minutes (autLTD) to hours (CB(1) desensitization). Our findings imply a remarkable flexibility for the cannabinoid signaling system whereby discrete mechanisms of CB(1) activation within a single neuron yield temporally and mechanistically distinct forms of plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cannabinoid Receptor Activation on Spreading Depression

Objective(s) The objective of this study was to evaluate the effect of cannabinoid on cortical spreading depression (CSD) in rat brain. Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine. CSD is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. Materials and Methods T...

متن کامل

Cannabinoid CB1 Receptor-Dependent Long Term Depression in

25 Long term depression (LTD) of synaptic signaling—lasting from tens of minutes to hours 26 or longer—is a widespread form of synaptic plasticity in the brain. Neurons express 27 diverse forms of LTD, including autaptic LTD (autLTD) observed in cultured 28 hippocampal neurons, the mechanism of which remains unknown. We have recently 29 reported that autaptic neurons express both endocannabinoi...

متن کامل

Repeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo

Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...

متن کامل

Stress switches cannabinoid type-1 (CB1) receptor-dependent plasticity from LTD to LTP in the bed nucleus of the stria terminalis.

The bed nucleus of the stria terminalis (BNST) exerts a coordinated modulation of the psychoneuroendocrine responses to stress. However, how acute stress impacts on BNST in vivo plasticity is a crucial question that still remains unanswered. Here, neurons from the anterior portion of the BNST (aBNST) were recorded in vivo during and after stimulation of their medial prefrontal cortical (mPFC) a...

متن کامل

The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum.

Endocannabinoids work as retrograde messengers and contribute to short-term and long-term modulation of synaptic transmission via presynaptic cannabinoid receptors. It is generally accepted that the CB1 cannabinoid receptor (CB1) mediates the effects of endocannabinoid in inhibitory synapses. For excitatory synapses, however, contributions of CB1, "CB3," and some other unidentified receptors ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 102 2  شماره 

صفحات  -

تاریخ انتشار 2009